Quantum Chemical Studies of Epoxide- Transforming Enzymes
نویسنده
چکیده
Density functional theory is employed to study the reaction mechanisms of different epoxide-transforming enzymes. Calculations are based on quantum chemical active site models, which are build from X-ray crystal structures. The models are used to study conversion of various epoxides into their corresponding diols or substituted alcohols. Epoxide-transforming enzymes from three different families are studied. The human soluble epoxide hydrolase (sEH) belongs to the α/β-hydrolase fold family. sEH employs a covalent mechanism to hydrolyze various epoxides into vicinal diols. The Rhodococcus erythrobacter limonene epoxide hydrolase (LEH) constitutes a novel epoxide hydrolase, which is considered the founding member of a new family of enzymes. LEH mediates transformation of limone-1,2-epoxide into the corresponding vicinal diol by employing a general acid/general base-mediated mechanism. The Agrobacterium radiobacter AD1 haloalcohol dehalogenase HheC is related to the short-chain dehydrogenase/reductases. HheC is able to convert epoxides using various nucleophiles such as azide, cyanide, and nitrite. Reaction mechanisms of these three enzymes are analyzed in depth and the role of different active site residues is studied through in silico mutations. Steric and electronic factors influencing the regioselectivity of epoxide opening are identified. The computed energetics help to explain preferred reaction pathways and experimentally observed regioselectivities. Our results confirm the usefulness of the employed computational methodology for investigating enzymatic reactions.
منابع مشابه
Nitrile Hydratases and Epoxide-Transforming Enzymes: Quantum Chemical Modeling of Reaction Mechanisms and Selectivities
Quantum chemical studies of enzymatic reactions are able to provide detailed insight into mechanisms and catalytic strategies. The energetic feasibility of proposed mechanisms can be established, and new possible reaction pathways can be put forward. The role of the involved active site residues can be analyzed in detail and the origins for experimentally observed selectivities can be investiga...
متن کاملQuantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution
Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...
متن کاملChemical structure, reactivity, and carcinogenicity of halohydrocarbons.
This review summarizes studies concerning the covalent binding of [14C]TCE to rat liver microsomal protein and exogenous DNA, in vitro, the enhancement of this binding by inducers of mixed-function oxidases, and inhibition of binding by inhibitors of these enzymes. Furthermore, recent studies on this type of binding in various strains of mice and rats of both sexes and using microsomal preparat...
متن کاملQuantum chemistry studies on reactivity of the 2-Amino-3-(3,4-Dihydroxyphenyl)Propanoic Aciddrug linked to to C60
In this research at the first 2-amino-3-(3,4-dihydroxyphenyl) propanoic aciddrug drug and its fullerene derivative were optimized. NBO calculations and NMR for the complexes were carried out at the B3LYP/6-31G*quantum chemistry level. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO, chemical potential (µ ), chemical hardness ...
متن کاملLaboratory‐Evolved Enzymes Provide Snapshots of the Development of Enantioconvergence in Enzyme‐Catalyzed Epoxide Hydrolysis
Engineered enzyme variants of potato epoxide hydrolase (StEH1) display varying degrees of enrichment of (2R)-3-phenylpropane-1,2-diol from racemic benzyloxirane. Curiously, the observed increase in the enantiomeric excess of the (R)-diol is not only a consequence of changes in enantioselectivity for the preferred epoxide enantiomer, but also to changes in the regioselectivity of the epoxide rin...
متن کامل